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Optical processes in insulators and semiconductors, including excitonic effects, can be described in principle
exactly using time-dependent density-functional theory �TDDFT�. Starting from a linearization of the TDDFT
semiconductor Bloch equations in a two-band model, we derive a simple formalism for calculating exciton
binding energies. This formalism leads to a generalization of the standard Wannier equation for excitons,
featuring a nonlocal effective electron-hole interaction determined by long-range and dynamical exchange-
correlation �XC� effects. We calculate exciton binding energies in several direct-gap semiconductors using
exchange-only and model XC kernels.
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I. INTRODUCTION

The elementary model of Wannier excitons in insulators
views them as bound electron-hole pairs which satisfy a hy-
drogenlike Schrödinger equation:1

�−
�2�2

2mr
−

e2

�r
���r� = E��r� . �1�

Here, mr is the reduced electron-hole effective mass, e is the
electron charge, � is the static dielectric constant of the ma-
terial, and � and E are the excitonic wave functions and
binding energies �from now on we set �=e=1�. Equation �1�,
also known as Wannier equation,2 produces a Rydberg series
of discrete energy states below the conduction-band edge and
a redistribution of oscillator strength in the optical spectrum
around the band edge which is qualitatively described by the
Elliott formula.3 Excitonic effects are important for a large
variety of optical processes in organic and inorganic materi-
als and nanoscale systems.4,5

Equation �1� can be derived from the semiconductor
Bloch equations within the time-dependent Hartree-Fock ap-
proximation using a dielectrically screened Coulomb
interaction.3,6 It is well known that time-dependent Hartree-
Fock with bare Coulomb interaction leads to very poor opti-
cal spectra of materials with strongly overbound excitons. A
more rigorous ab initio treatment of excitation processes in
insulators and semiconductors, including correlation-induced
screening, can be developed using many-body Green’s func-
tion techniques such as the GW/Bethe-Salpeter equation.7

Time-dependent density-functional theory �TDDFT� �Ref.
8� has recently emerged as an alternative, computationally
convenient approach to electronic excitation processes in
materials.7,9–11 In linear-response TDDFT, excitation ener-
gies can be calculated in principle exactly,12,13 provided the
exchange-correlation �XC� kernel fxc�r ,r� ,�� is known. In
Refs. 7 and 9, an approximate fxc was constructed from
many-body Green’s functions, whereas Ref. 10 uses an
exact-exchange �EXX� approach, including a cutoff in wave
vector space which mimics screening of the Coulomb
interaction.14 These studies have established that TDDFT is
capable of accurately describing excitonic effects in solids,
although one needs XC functionals that go beyond the more

common ones such as the adiabatic local-density approxima-
tion �ALDA�.8 The resulting agreement with experimental
data is excellent11 but the technical effort is not significantly
less than for standard many-body approaches.

The purpose of this Brief Report is to develop a formally
much simpler TDDFT treatment of excitonic effects in sol-
ids. Rather than calculating complete optical spectra, our
goal is more modest, namely, a method that directly yields
exciton binding energies, similar to the Wannier equation �1�.
Starting from a TDDFT version of the semiconductor Bloch
equations,15 we derive an effective electron-hole interaction
which explicitly shows how long-range XC effects are essen-
tial for exciton formation. Our simplified treatment not only
provides physical insight into the way excitonic effects are
treated in TDDFT but also provides a straightforward way of
testing approximate XC functionals.

II. TIME-DEPENDENT KOHN-SHAM FORMALISM
FOR SOLIDS

In TDDFT, the electron dynamics of a solid is described
by the time-dependent Kohn-Sham �KS� orbitals � jk�r , t�,
where k is the wave vector and j is the valence-band index
�only the time evolution of the initially occupied states is
considered�. The system is assumed to start from the ground
state, � jk�r , t0�=� jk�r�. The KS Bloch functions and band
structure follow from

�−
�2

2m
+ Vlat�r� + VH

0 �r� + Vxc
0 �r� − � jk�� jk�r� = 0, �2�

where Vlat is the crystal lattice potential �within the Born-
Oppenheimer approximation� and VH

0 and Vxc
0 are the static

Hartree and XC potentials.
Since the � jk�r� form a complete set for each k, we can

expand the time-dependent KS orbitals as follows:

� jk�r,t� = �
l

ck
jl�t��lk�r� , �3�

where the summation runs over all valence and conduction
bands, including continuum states. Equation �3� is appropri-
ate if we assume the system to interact with an electromag-
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netic field in dipole approximation. We define the density
matrix 	 jk

lm�t�=ck
jl�t��ck

jm�t���, whose equation of motion is

i
�

�t
� jk�t� = �Hk�t�,� jk�t�� , �4�

with initial condition 	 jk
lm�t0�=
 jl
ml. The matrix elements of

the TDDFT Hamiltonian are

Hk
lm�t� =

1

�
�

�

d3r�lk
� �r�H�t��mk�r�

= �lk
lm + E�t�dk
lm + ṼHk

lm �t� + Ṽxck
lm �t� , �5�

where � is the volume of the lattice unit cell, E�t� is the
electric-field amplitude, and dk

lm are the dipole matrix ele-

ments. ṼH�t�=VH�t�−VH
0 denotes the dynamic part of the

Hartree potential, and similar for XC. Self-consistent solu-
tion of Eq. �4�, with the time-dependent density

n�r,t� = 2�
jk

���F − � jk��
lm

	 jk
lm�t��lk�r��mk

� �r� , �6�

where �F is the Fermi energy, is equivalent to solving the
time-dependent KS equations for the solid, and is thus in
principle exact.

III. TWO-BAND MODEL AND EXCITONS

To study optical excitation processes near the band gap, a
two-band model is a reasonable and widely used approxima-
tion. We consider one valence and one conduction band, v
and c, assumed to be nondegenerate �see Ref. 16 for a dis-
cussion of band degeneracy�. The index j of the density ma-
trix 	 jk

lm�t� refers to v and will be dropped in the following.
Equation �4� yields the TDDFT semiconductor Bloch equa-
tions for the two independent components 	k

vv and 	k
vc,15

�

�t
	k

vv�t� = − 2 Im	�E�t�dk
cv + ṼHk

cv �t� + Ṽxck
cv �t��	k

vc�t�
 , �7�

i
�

�t
	k

vc�t� = ��k
v − �k

c + ṼHk
vv �t� + Ṽxck

vv �t� − ṼHk
cc �t�

− Ṽxck
cc �t��	k

vc�t� + �E�t�dk
vc + ṼHk

vc �t� + Ṽxck
vc �t��


�	k
cc�t� − 	k

vv�t�� . �8�

Notice that 	k
vv+	k

cc=1 and 	k
vc=	k

cv�. In Ref. 15, Eqs. �7� and
�8� were evaluated in the time domain for ultrafast pulsed
excitations. Here, we are interested in exciton binding ener-
gies and we linearize Eq. �8�:

i
�

�t
	k

vc�t� = ��k
v − �k

c�	k
vc�t� − 
ṼHk

vc �t� − 
Ṽxck
vc �t� , �9�

where we dropped the time-dependent external field term
since the excitations we are interested in can be viewed as

eigenmodes of the system. Here, 
ṼHk
vc and 
Ṽxck

vc denote the
linearized dynamical Hartree and XC potentials. In a peri-
odic insulating solid, the Hartree term only gives rise to the
so-called local-field corrections, which do not affect exci-

tonic binding.7 We will therefore only keep the XC contribu-
tion in the following.

Fourier transformation of Eq. �9� and the corresponding
equation for 	k

cv�t� leads to

	k
vc��� = −

�
q

�Fkq
vccv���	q

vc��� + Fkq
vcvc���	q

cv����

� + �k
cv , �10�

	k
cv��� =

�
q

�Fkq
cvcv���	q

vc��� + Fkq
cvvc���	q

cv����

� − �k
cv , �11�

where �k
cv=�k

c −�k
v,

Fkq
ijmn��� =

2

�2�
�

d3r�
�

d3r��ik
� �r�� jk�r�fxc�r,r�,��


 �mq
� �r���nq�r�� , �12�

and the q summation runs over the first Brillouin zone. Equa-
tions �10� and �11� can be cast into an eigenvalue problem
for the excitation energies �. Since fxc is in general fre-
quency dependent, the eigenvalue problem is nonlinear. The
solutions are the exact exciton binding energies within the
two-band model.

Let us carry out a further simplification. Since typical
exciton binding energies are much smaller than the band gap,
i.e., �+�k

cv��−�k
cv, we can ignore the pole at negative �

�which is equivalent to the Tamm-Dancoff approximation8�
and boldly set 	k

vc=0. This leads to

�
q

��q
cv
kq + Fkq

cvvc����	q
cv��� = �	k

cv��� . �13�

Equation �13� is the equivalent for extended systems of the
well-known single-pole approximation of linear-response
TDDFT.12 For finite atomic or molecular systems, the single-
pole approximation only involves two discrete levels. Here,
it involves two entire bands, which clearly shows the collec-
tive nature of excitonic effects. We point out that Eq. �13�
yields exciton binding energies relative to the conduction-
band edge, which can be accurate even if the band gap itself
is not.

IV. TDDFT WANNIER EQUATION

Our next goal is to derive a real-space equation for the
exciton binding energies. 	k

cv is a periodic function in recip-
rocal space, with Fourier transform 	�R ,��=�ke−ik·R	k

cv���,
where R is a direct lattice vector. Similarly, we define

Veh�R,R�,�� = �
k,q

e−ik·RFkq
cvvc���eiq·R�. �14�

From the point of view of a Wannier exciton, which extends
over many lattice constants, R can be approximated as a
continuous variable. We assume a direct band-gap material
and use approximate parabolic dispersions with conduction-
and valence-band effective masses mc and mv, and reduced
electron-hole effective mass mr

−1=mc
−1+mv

−1. This yields the
TDDFT version of the Wannier equation �1�,
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�−
�2

2mr
− Eb,i�	i�r� + � all

space

d3r�Veh�r,r�,��	i�r�� = 0,

�15�

featuring a nonlocal, frequency-dependent electron-hole in-
teraction Veh�r ,r� ,��, where �=Eg

KS+Eb,i, and Eg
KS is the

KS band gap. The ith exciton binding energy Eb,i is mea-
sured with respect to the KS conduction-band edge and the
	i�r� are the analog of the excitonic wave functions ��r� of
Eq. �1�.

V. XC KERNELS

The effective electron-hole interaction in TDDFT and
thus the exciton binding energies depend crucially on the
approximate XC kernel. In the following, we shall imple-
ment several simple frequency-independent XC kernels and
test their performance in our formalism.

The exchange-only ALDA kernel is given by

fx
ALDA�r,r�� = − �9�n0

2�r��−1/3
�r − r�� , �16�

where n0�r� is the equilibrium electron density. fx
ALDA be-

longs to the class of ultra-short-range kernels; the simplest of
them is

fxc
contact�r,r�� = − A
�r − r�� , �17�

where A is a positive constant. Such kernels have been used
with some success in contact exciton models.11

An approximation of EXX TDDFT,10 the Slater exchange
kernel, is given by12

fx
Slater�r,r�� = −

2��
jk

���F − � jk�� jk�r�� jk
� �r���2

�r − r��n0�r�n0�r��
. �18�

This kernel exhibits some degree of long-range behavior17

but not the ultranonlocality �
1 /q2 in momentum space� of
the exact fxc.

7,10,11 This long-range contribution �LRC� can
be explicitly taken into account using the following model
kernel:18

fxc
LRC�r,r�� = −

�

4��r − r��
, �19�

where � is again an adjustable parameter.

VI. RESULTS AND DISCUSSION

We have tested our TDDFT approach for exciton binding
energies, Eq. �13�, for the zinc-blende materials GaAs and
�-GaN and for the wurtzite materials �-GaN, CdS, and
CdSe. The Bloch functions for the conduction and heavy-
hole valence bands were obtained from local-density ap-
proximation �LDA� band structures calculated with the
plane-wave pseudopotential code ABINIT.19 We used on the
order of 500 k points in the first Brillouin zone for all mate-
rials. Out of these, there are ten independent points for GaAs
and �-GaN and 20 for �-GaN, CdS, and CdSe, which deter-
mines the dimension of the eigenvalue problem �13�. Recent

Bethe-Salpeter calculations of exciton binding energies used
much higher k-point densities close to the zone center;20,21

we performed convergence checks of our k-point sampling
rates and found them to be sufficiently accurate for our
simple model.

As expected, the ALDA does not produce any bound ex-
citons. Results for the other three XC kernels and experimen-
tal binding energies of the lowest direct excitons are pre-
sented in Table I. The contact and LRC kernels, Eqs. �17�
and �19�, contain adjustable parameters which can be tuned
to reproduce the experimental exciton binding energies. In
Ref. 18, � /4�=0.2 was found for GaAs, which is similar to
our results in Table I. In Ref. 23, A=15 was obtained for Si,
which is somewhat larger than our values of A for III-V and
II-VI materials.

The contact and LRC kernels only yield a single excitonic
bound state.18 This is generally the case for static XC kernels
that are local in reciprocal space, i.e., have the form fxc�q�.
The Slater XC kernel �Eq. �18�� does have some degree of
nonlocality in reciprocal space but we found that it only
produces a single excitonic state, like the local kernels. To
obtain an excitonic Rydberg series one needs an XC kernel
that has a sufficiently strong nonlocal form or is frequency
dependent.23,24

Looking at the results obtained with fx
Slater, we find exci-

tons that are overbound by 14 meV in GaAs and by 2.7 meV
in �-GaN. This overbinding is what one would expect from
an unscreened exchange-only approach �electronic screening
can be viewed as a correlation effect�. On the other hand,
fx

Slater approaches a constant for q→0 in homogeneous
systems,17 whereas the full EXX fx behaves as 1 /q2.10 This
would suggest that fx

Slater has a somewhat weaker effective
electron-hole interaction than full EXX. This trend seems
confirmed in the wurtzite materials whose calculated exciton
binding energies are significantly below experiment.

Additional insight is provided by comparing the electron-
hole interaction Veh for the different XC kernels under study.
Figure 1 shows Veh�r ,0� for GaAs along the x direction �due
to the finite sampling in k space, Veh can only be reliably
calculated within the range of about one unit cell�. In ALDA,
the interaction is close to zero and thus too shallow to lead to
any excitonic binding. The other XC kernels produce stron-
ger electron-hole interactions, where for GaAs the contact
and LRC models are less attractive than the Slater approxi-
mation.

TABLE I. Eb
exp and Eb

Slater: lowest direct exciton binding energies
�in meV� for selected III-V and II-VI compounds, from experiment
�Ref. 22� and from Eqs. �13� and �12� with fx

Slater. The parameters A
and � /4� �in a.u.� are fitted to reproduce Eb

exp using Eqs. �13� and
�12� with fxc

contact and fxc
LRC.

A � /4� Eb
Slater Eb

exp

GaAs 0.42 0.12 17.8 3.27

�-GaN 1.06 0.55 28.7 26.0

�-GaN 2.03 0.91 11.8 20.4

CdS 6.28 1.83 7.9 28.0

CdSe 4.84 1.19 8.3 15.0
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VII. CONCLUSION

We have presented a simple method to calculate exciton
binding energies using TDDFT. The main idea, restricting
the dynamics to the highest valence and the lowest conduc-
tion band, is similar to the single-pole approximation for
excitation energies.12 Our derivation was based on the TD-
DFT semiconductor Bloch equation; an alternative starting
point could be the Casida formalism of linear-response
TDDFT,13 formulated for periodic systems.25 The resulting
simple eigenvalue equation in momentum space, Eq. �13�, is
readily diagonalized to yield the exciton binding energies.
Transformation into real space leads to the TDDFT analog of
the Wannier equation for excitons and shows that the effec-
tive electron-hole interaction is nonlocal.

The quality of the results depends crucially on the ap-
proximation used for fxc�r ,r� ,��. It is well known that local
and semilocal approximations such as the ALDA do not pro-
duce any excitons. There exist sophisticated parameter-free
XC kernels9 that are capable of reproducing experimental
optical-absorption spectra very accurately, including bound
excitons,24 but with substantial computational cost.

If only particular aspects of the optical spectrum of a ma-
terial are required such as, for instance, the lowest bound
exciton, simple static XC kernels can be a convenient alter-
native. The contact and the LRC kernels behave quite simi-
larly in the sense that they produce a single excitonic peak. A
detailed analysis was given in Ref. 23 and we find the same
behavior in our two-band approach. The parameter-free
Slater exchange-only kernel also produces a single exciton,
which was found to be overbound in zinc-blende materials,
and underbound in wurtzite. There are theoretical arguments
in favor of both trends, which suggests a need for more sys-
tematic studies of the Slater exchange kernel in solids.

In conclusion, our simple approach for exciton binding
energies is a promising method to test XC kernels in solids.
It can be extended in a straightforward way to deal with
spin-dependent excitations �triplet excitons�, to implement
more sophisticated XC kernels, or to include more bands.
Furthermore, the model can be easily made time dependent
to study ultrafast nonlinear excitations using the TDDFT
semiconductor Bloch equations.
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